无码中文字幕色专区_91av俱乐部_无码人妻h动漫_26uuu成人_91九色丨porny丨国产jk_青青视频在线播放_国内自拍第二页_国产又粗又长又爽又黄的视频_色哟哟免费网站_久久出品必属精品_a级黄色一级片_99日在线视频

中國自動化學會專家咨詢工作委員會指定宣傳媒體
新聞詳情

在低功耗MCU上實現(xiàn)人工智能和機器學習

http://m.moduwu.com 2025-02-21 09:35 來源:Silicon Labs

人工智能(AI)和機器學習(ML)技術(shù)不僅正在快速發(fā)展,還逐漸被創(chuàng)新性地應(yīng)用于低功耗的微控制器(MCU)中,從而實現(xiàn)邊緣AI/ML解決方案。這些MCU是許多嵌入式系統(tǒng)不可或缺的一部分,憑借其成本效益、高能效以及可靠的性能,現(xiàn)在能夠支持AI/ML應(yīng)用。這種集成化在可穿戴電子產(chǎn)品、智能家居設(shè)備和工業(yè)自動化等應(yīng)用領(lǐng)域中,從AI/ML功能中獲得的效益尤為顯著。具備AI優(yōu)化功能的MCU和TinyML的興起(專注于在小型、低功耗設(shè)備上運行ML模型),體現(xiàn)了這一領(lǐng)域的進步。TinyML對于直接在設(shè)備上實現(xiàn)智能決策、促進實時處理和減少延遲至關(guān)重要,特別是在連接有限或無連接的環(huán)境中。

TinyML是指在小型、低功耗設(shè)備上應(yīng)用機器學習模型,尤其是在微控制器(MCU)平臺上,這些MCU經(jīng)過優(yōu)化,可以在設(shè)備有限的資源體系內(nèi)運行。這使得邊緣設(shè)備能夠?qū)崿F(xiàn)智能決策,支持實時處理并減少延遲。量化(Quantization)和剪枝(Pruning)等技術(shù)用于減小模型大小并提高推理速度。量化通過降低模型權(quán)重的精度,顯著減少內(nèi)存使用而幾乎不影響準確性;剪枝則通過去除不太重要的神經(jīng)元,進一步減小模型規(guī)模并提升延遲性能。這些方法對于在資源有限的設(shè)備上部署ML模型至關(guān)重要。

PyTorch和TensorFlow Lite都是實現(xiàn)機器學習模型的主流框架。PyTorch是一個開源機器學習庫,被廣泛用于人工智能應(yīng)用的開發(fā),包括可以部署在微控制器上的應(yīng)用程序。PyTorch提供了用于機器學習的工具和庫,包括計算機視覺和自然語言處理,可用于低功耗和小尺寸設(shè)備。

TensorFlow Lite for Microcontroller(TFLM)能夠在非常受限的MCU類設(shè)備上運行具有Flatbuffer轉(zhuǎn)換功能的TF Lite模型。這減少了模型的大小,并優(yōu)化了它在MCU上的推理。

另一個重要的工具是來自ARM的CMSIS-NN庫,它為Cortex-M處理器提供了優(yōu)化的神經(jīng)網(wǎng)絡(luò)內(nèi)核來運行TFLM模型。CMSIS-NN庫提高了性能并減少了內(nèi)存占用,使其更容易在基于ARM的MCU上運行ML模型。

此外,一些MCU還配備了專用的AI/ML硬件加速器,如Silicon Labs(芯科科技)的EFM32無線SoC和MCU,可以顯著提高ML模型的性能,使更復(fù)雜的應(yīng)用程序能夠在這些設(shè)備上更快、更高效地運行。人工智能加速器擅長并行化任務(wù),如矩陣乘法、卷積和圖形處理。通過利用多樣化的并行性,它們可以一次執(zhí)行大量的計算。這使得人工智能工作負載的速度大大提高,同時保持低功耗。這些加速器還增強了內(nèi)存訪問模式,減少了數(shù)據(jù)傳輸開銷,主CPU—CortexM可以進入低功耗睡眠模式,以節(jié)省更多的能量或管理額外的任務(wù)。通過使數(shù)據(jù)更接近計算單元,它們減少了等待時間。其結(jié)果是增強了性能、降低了功耗和延遲。

實際應(yīng)用

TinyML的實際應(yīng)用是多種多樣且有影響力的。一個值得注意的示例是音頻和視覺喚醒詞,當說出特定的關(guān)鍵字或在圖像中檢測到某人時,設(shè)備會觸發(fā)動作。這項技術(shù)被用于智能揚聲器和安全攝像頭,支持它們在識別到喚醒詞或檢測運動時激活。另一種應(yīng)用是工業(yè)環(huán)境中的預(yù)測性維護。工廠設(shè)備上的傳感器持續(xù)監(jiān)測振動和溫度等參數(shù),可使用TinyML模型檢測來異常并在故障發(fā)生之前預(yù)測維護需求,這有助于減少停機時間和維護成本。

手勢和活動識別是TinyML的另一種令人興奮的應(yīng)用。配備加速度計和陀螺儀的可穿戴設(shè)備可以監(jiān)測身體活動,如走路、跑步或特定手勢。這些設(shè)備使用TinyML模型實時分析傳感器數(shù)據(jù),為健身追蹤或醫(yī)療診斷提供有價值的見解。在農(nóng)業(yè)領(lǐng)域,TinyML被用于環(huán)境監(jiān)測。智能農(nóng)業(yè)系統(tǒng)分析土壤濕度和天氣條件,以優(yōu)化灌溉,提高作物產(chǎn)量和資源效率。

TinyML還增強了健康監(jiān)測功能。諸如連續(xù)血糖監(jiān)測儀(CGM)這樣需要長時間電池壽命和實時數(shù)據(jù)處理的設(shè)備,都能夠極大地受益于這項技術(shù)。此外,智能床傳感器可以在沒有直接接觸的情況下評估病人的呼吸模式,為遠程觀察提供不間斷的健康數(shù)據(jù)。這一創(chuàng)新在管理老年人護理和慢性疾病方面特別有價值,因為持續(xù)監(jiān)測有助于及早發(fā)現(xiàn)潛在的健康問題。

啟動開發(fā)

要開始構(gòu)建自己的TinyML應(yīng)用,您需要了解TinyML的基礎(chǔ)知識并選擇合適的硬件。根據(jù)您的應(yīng)用,您可能需要傳感器來收集數(shù)據(jù),例如加速度計、麥克風或攝像頭。設(shè)置開發(fā)環(huán)境包括安裝Simplicity Studio集成開發(fā)環(huán)境(IDE)、SDK和TinyML所需的資源庫。

下一步是收集和準備與應(yīng)用相關(guān)的數(shù)據(jù)。例如,如果您正在構(gòu)建一個手勢識別系統(tǒng),您需要收集不同手勢的加速度計數(shù)據(jù)。收集數(shù)據(jù)后,您需要對其進行預(yù)處理,使其適合訓(xùn)練您的模型。訓(xùn)練模型需要在功能強大的機器上使用高級框架,如TensorFlow或PyTorch。一旦訓(xùn)練完畢,模型需要使用量化和剪枝等技術(shù)進行優(yōu)化。

在完成優(yōu)化后,即可將模型轉(zhuǎn)換為適合MCU的格式,如TensorFlow Lite格式。最后一步是將優(yōu)化后的模型部署到MCU,將其與應(yīng)用程序代碼集成,并對其進行全面測試,以確保其滿足性能和精度要求。基于實際性能的不斷迭代和改進對于完善TinyML應(yīng)用至關(guān)重要。

利用芯科科技的解決方案在微控制器上實現(xiàn)人工智能和機器學習

芯科科技提供了一系列解決方案,有助于在MCU上實現(xiàn)AI/ML。EFR32/EFM32(xG24、xG26、xG28)和SiWx917系列微控制器由于其低功耗和強大的性能而非常適合TinyML應(yīng)用。以下是在芯科科技MCU上實現(xiàn)AI/ML的詳細技術(shù)指南:

數(shù)據(jù)采集與預(yù)處理

數(shù)據(jù)采集:使用連接到MCU的傳感器采集原始數(shù)據(jù),例如加速度計、陀螺儀和溫度傳感器等傳感器都可用于各種應(yīng)用。

預(yù)處理:對數(shù)據(jù)進行清理和預(yù)處理,使其適合訓(xùn)練。這可能包括過濾噪聲、對數(shù)值進行歸一化處理以及將數(shù)據(jù)分割到窗口中。為此,芯科科技提供了數(shù)據(jù)采集和預(yù)處理工具。

數(shù)據(jù)采集工具則由合作伙伴SensiML提供:https://github.com/sensiml/sensiml_xG24_dual_audio_imu_capture

模型訓(xùn)練

模型選擇:根據(jù)應(yīng)用選擇合適的ML模型。常用的模型包括決策樹(decision tree)和支持向量機(vector machine)。

訓(xùn)練:在高性能云服務(wù)器或帶有GPU的本地PC上使用TensorFlow訓(xùn)練模型。這包括將預(yù)處理數(shù)據(jù)輸入模型并調(diào)整參數(shù)以最小化誤差。

模型轉(zhuǎn)換:使用TensorFlow Lite轉(zhuǎn)換器將訓(xùn)練模型轉(zhuǎn)換為與TF Lite Micro兼容的格式。TensorFlow Lite for Microcontrollers (TFLM)中的FlatBuffer轉(zhuǎn)換包括將TensorFlow Lite模型轉(zhuǎn)換為FlatBuffer格式,這是一種緊湊的二進制格式,可以高效地存儲和快速地訪問。這個過程對于在內(nèi)存和處理能力有限的微控制器上運行機器學習模型至關(guān)重要。FlatBuffers支持直接訪問模型而無需解壓。一旦采用FlatBuffer格式,該模型可以由微控制器執(zhí)行,使其能夠執(zhí)行推理任務(wù)。這種轉(zhuǎn)換減小了模型大小,使其適用于內(nèi)存非常有限的設(shè)備,并且可以快速訪問和執(zhí)行模型,而無需進行大量解析。此外,它還確保該模型可以在運行速率低于1GHz、代碼空間有限(通常低于3MB)、SRAM有限(約256KB)的MCU上被無縫集成和執(zhí)行。

模型部署

與Simplicity SDK集成:使用芯科科技的Simplicity SDK將TF Lite Micro與MCU集成。

閃存模型(Flashing the Model):將轉(zhuǎn)換后的模型移植到MCU的Flash上。這可以使用Simplicity Studio完成,它為芯科科技MCU的編程提供了一個用戶友好的界面。

推理和優(yōu)化:應(yīng)用量化和剪枝等優(yōu)化技術(shù),以減小模型大小并提高性能。

運行推理:一旦模型部署完成,它可以在MCU上運行推理。這包括向模型中輸入新數(shù)據(jù)并獲得預(yù)測結(jié)果。

軟件工具鏈:新的軟件工具包旨在支持開發(fā)人員使用一些最流行的工具套件(如TinyML和TensorFlow)快速構(gòu)建和部署人工智能和機器學習算法。AI/ML軟件幫助設(shè)計人員創(chuàng)建新的應(yīng)用程序。除了原生支持TensorFlow來為高效推理提供優(yōu)化內(nèi)核之外,芯科科技還與一些領(lǐng)先的AI/ML工具提供商(如SensiML和Edge Impulse)合作,以確保開發(fā)人員擁有端到端的工具鏈來簡化機器學習模型的開發(fā),這些模型針對無線應(yīng)用的嵌入式部署進行了優(yōu)化。通過將這一全新的AI/ML工具鏈與芯科科技的Simplicity Studio開發(fā)平臺以及xG24、xG28和xG26系列SoC結(jié)合使用,開發(fā)人員可以創(chuàng)建能夠從各種互聯(lián)設(shè)備獲取信息的應(yīng)用,這些設(shè)備都可以相互通信,從而做出智能的、由機器學習驅(qū)動的決策。

芯科科技提供各種工具和資源來支持ML應(yīng)用。以下是其中一些例子:

機器學習應(yīng)用:芯科科技提供集成化的硬件、軟件和開發(fā)工具,幫助客戶快速創(chuàng)建適用于工業(yè)和商業(yè)應(yīng)用場景的、安全的智能設(shè)備。開發(fā)平臺支持嵌入式機器學習(TinyML)模型推理,由Tensorflow Lite for Microcontrollers(TFLM)框架支持。該存儲庫包含一組利用ML的嵌入式應(yīng)用程序:https://github.com/SiliconLabs/machine_learning_applications

機器學習工具包(MLTK):這是一個帶有命令行實用程序和腳本的Python軟件包,可支持基于芯科科技的嵌入式平臺開發(fā)的機器學習模型。它包括從命令行界面或Python腳本執(zhí)行ML操作的各項功能,并可確定ML模型在嵌入式平臺上的執(zhí)行效率,以及使用谷歌Tensorflow訓(xùn)練ML模型。

參考數(shù)據(jù)集:MLTK附帶參考模型使用的數(shù)據(jù)集。這些數(shù)據(jù)集可以在Github上找到:

https://github.com/SiliconLabs/mltk/blob/master/docs/python_api/datasets/index.md

音頻特征生成器(Audio Feature Generator):芯科科技提供了與TensorFlow Lite模型一起使用的音頻特征生成器。它根據(jù)sl_ml_audio_feature_generation_config.h中的配置去進行前端的初始化來生成功能,并以流模式來初始化和啟動麥克風。https://docs.silabs.com/machine-learning/latest/machine-learning-tensorflow-lite-api/ml-audio-feature-generation

MLPerf Tiny Benchmark:MLPerf Tiny Benchmark是由一家開放工程聯(lián)盟MLCommons設(shè)計的性能評估套件。它旨在衡量ML系統(tǒng)在推理方面的性能和能效,將訓(xùn)練好的ML模型應(yīng)用于新數(shù)據(jù)。該基準是專門為低功耗的最小設(shè)備量身定制的,通常用于深度嵌入式應(yīng)用,如物聯(lián)網(wǎng)(IoT)或智能傳感。

芯科科技參與了MLPerf Tiny基準測試,提交了展示機器學習工具包(MLTK)功能的解決方案。該工具包包括TinyML基準測試使用的幾個模型,可在GitHub上獲得,涵蓋異常檢測、圖像分類、關(guān)鍵字識別和視覺喚醒詞等應(yīng)用程序。

與以前的版本相比,使用MLPerf Tiny v1.0的結(jié)果顯示出了推理速度提高,以及代碼規(guī)模和內(nèi)存使用量的減少。例如,Plumerai的推理引擎表現(xiàn)出了顯著的增強,包括支持時間序列神經(jīng)網(wǎng)絡(luò),如基于LSTM的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),這在運動傳感器、健康傳感器、語音和音頻應(yīng)用中很常見。

AI/ML合作伙伴

芯科科技與業(yè)界領(lǐng)先的供應(yīng)商合作,包括Edge Impulse、SensiML、NeutonAI和Eta Compute等AutoML工具鏈和SaaS云伙伴建立了合作關(guān)系。此外,諸如Sensory和MicroAI等解決方案提供商,以及包括Capgemini和Jabil在內(nèi)的設(shè)計合作伙伴都是該網(wǎng)絡(luò)的一部分。這些聯(lián)盟提供了可簡化綜合解決方案開發(fā)的平臺,使初學者更容易接觸到邊緣的AI/ML。

TinyML在MCU上的優(yōu)勢:

成本低-MCU價格合理

綠色環(huán)保-能耗低

易于集成-可輕松將MCU集成到現(xiàn)有環(huán)境中

隱私與安全-在本地處理數(shù)據(jù),無需聯(lián)網(wǎng)傳輸

快速原型開發(fā)-快速開發(fā)概念驗證解決方案

自主可靠-微型設(shè)備在任何環(huán)境下都能穩(wěn)定運行

實時處理-將延遲降至最低

嵌入式開發(fā)應(yīng)用流程

開發(fā)具有機器學習功能的應(yīng)用需要兩個不同的工作流程:

使用Simplicity Studio來創(chuàng)建無線應(yīng)用的嵌入式應(yīng)用開發(fā)工作流程。

創(chuàng)建將添加到嵌入式應(yīng)用的機器學習功能的機器學習工作流程。

目標應(yīng)用

運動檢測:在商業(yè)辦公大樓里,許多燈都是由運動探測器控制的,該探測器監(jiān)測占用情況,以確定燈是否應(yīng)該打開或關(guān)閉。然而,當員工在辦公桌前打字時,由于動作僅限于手和手指,因為運動傳感器本身無法識別他們的存在,所以可能會出現(xiàn)自動關(guān)燈而無法為員工可提供照明。通過將音頻傳感器與運動探測器連接起來,額外的音頻數(shù)據(jù)(如打字的聲音)可以通過機器學習算法進行處理,從而使照明系統(tǒng)能夠更明智地決定燈是應(yīng)該打開還是關(guān)閉。

預(yù)測性維護:可使用芯科科技的EFR32 MCU來開發(fā)一個預(yù)測性維護系統(tǒng)。這需要使用連接的傳感器來收集機器的振動和溫度數(shù)據(jù),同時訓(xùn)練一個模型來根據(jù)這些數(shù)據(jù)預(yù)測潛在的故障,然后將該模型部署在MCU上,實現(xiàn)對機器的實時監(jiān)控和維護計劃。

健康監(jiān)測:使用EFM32 MCU構(gòu)建可穿戴健康監(jiān)測設(shè)備。使用傳感器收集心率和體溫等生命體征的數(shù)據(jù)。訓(xùn)練一個模型來檢測數(shù)據(jù)中的異常。在MCU上部署該模型,幫助用戶對健康情況提供實時分析了解。

智能農(nóng)業(yè):使用芯科科技的MCU開發(fā)智能灌溉系統(tǒng)。使用連接的傳感器收集土壤濕度和天氣數(shù)據(jù)。訓(xùn)練一個模型,以便根據(jù)這些數(shù)據(jù)來優(yōu)化水的使用。將該模型部署在MCU上,控制灌溉系統(tǒng),提高作物產(chǎn)量。

結(jié)論

MCU不再局限于簡單任務(wù),而是正成為實現(xiàn)AI的強大平臺。通過探索面向AI優(yōu)化的MCU,我們可以為電池供電的智能設(shè)備開辟新的潛在應(yīng)用。無論是智能家居設(shè)備還是工業(yè)傳感器,AI驅(qū)動的MCU正在重塑嵌入式系統(tǒng)的未來。

版權(quán)所有 工控網(wǎng) Copyright?2025 Gkong.com, All Rights Reserved
无码中文字幕色专区_91av俱乐部_无码人妻h动漫_26uuu成人_91九色丨porny丨国产jk_青青视频在线播放_国内自拍第二页_国产又粗又长又爽又黄的视频_色哟哟免费网站_久久出品必属精品_a级黄色一级片_99日在线视频
免费看日本毛片| a级黄色片免费| 一级特黄妇女高潮| 精品久久久噜噜噜噜久久图片| 中文字幕色呦呦| 久久精品一二三四| 中文字幕66页| 日韩av片网站| 99视频精品免费| 日韩少妇内射免费播放18禁裸乳| 国产麻豆电影在线观看| 午夜一区二区视频| 一级做a免费视频| 亚洲欧美日本一区二区三区| 日本xxxx黄色| 亚洲精品久久久久久宅男| 亚洲狼人综合干| 黄色av免费在线播放| 日韩免费高清在线| 亚洲无吗一区二区三区| 亚洲国产精品毛片av不卡在线| 久久网站免费视频| 日韩视频在线免费看| 波多野结衣作品集| 三级a在线观看| 亚洲欧美日本一区二区三区| 国产福利一区视频| 日韩欧美黄色大片| 国产成人黄色网址| 黄色片免费网址| 警花观音坐莲激情销魂小说| 国产又黄又爽免费视频| 永久免费网站视频在线观看| 精品国产一区二区三区无码| 亚洲色成人www永久在线观看| 成人一区二区免费视频| 青青草原av在线播放| 黄色三级视频片| 国产欧美一区二| 黄色录像特级片| 人妻夜夜添夜夜无码av| 青青青青草视频| 日本中文字幕高清| 天天色天天综合网| 日本a在线天堂| av免费观看网| 性欧美1819| 国产日韩欧美大片| 国模吧无码一区二区三区| 一区二区在线播放视频| www.久久av.com| 激情六月天婷婷| 成人小视频在线看| 婷婷中文字幕在线观看| 99久热在线精品视频| 欧美三级在线观看视频| 三级在线视频观看| 超碰超碰超碰超碰超碰| jizzjizzxxxx| 亚洲色图欧美自拍| 男人添女人下面高潮视频| 亚洲成人福利在线观看| 日韩av福利在线观看| 国产中文字幕视频在线观看| 污污的网站免费| av在线观看地址| 爱情岛论坛成人| 亚洲中文字幕无码一区二区三区| 精品一卡二卡三卡| 91视频福利网| 国产精品宾馆在线精品酒店| 欧洲美女亚洲激情| 国产精品秘入口18禁麻豆免会员| 国产成人美女视频| 国产亚洲精品网站| 蜜桃网站在线观看| 狠狠热免费视频| 美女扒开大腿让男人桶| wwwwwxxxx日本| 大肉大捧一进一出好爽视频| 精品一区二区成人免费视频 | 懂色av一区二区三区四区五区| 欧美 日韩 国产在线观看| 天美一区二区三区| 国产一区二区视频免费在线观看| 日本黄网站色大片免费观看| 男女爽爽爽视频| 免费超爽大片黄| 亚欧精品在线视频| 黄色av免费在线播放| 91黄色在线看| 手机成人av在线| 中文字幕av专区| 欧美污视频网站| 男人天堂手机在线视频| 一级片黄色免费| 97公开免费视频| 欧美日韩精品在线一区二区| 成年人三级视频| 五月天开心婷婷| 91人人澡人人爽人人精品| 男人日女人视频网站| 国产大尺度在线观看| 欧美精品久久久久久久久25p| 欧美日韩在线视频一区二区三区| 亚洲精品天堂成人片av在线播放| 国产欧美激情视频| 亚洲第一狼人区| 亚洲 中文字幕 日韩 无码| 久久久久久久中文| 日韩一级免费看| 日韩视频在线观看视频| 一级黄色在线播放| 亚洲a级黄色片| 五月天av在线播放| 三级在线视频观看| av网站在线不卡| 亚洲福利精品视频| 五月婷婷狠狠操| 亚洲成人av免费看| 久草精品在线播放| 国产又黄又大又粗视频| 日韩激情免费视频| 欧美日韩黄色一级片| 国产午夜福利100集发布| 日韩 欧美 视频| 99久久免费观看| av网站手机在线观看| 黄色一级片国产| 六月婷婷激情综合| 成人免费在线网| 免费无遮挡无码永久视频| 五十路熟女丰满大屁股 | 国产亚洲欧美在线视频| 国产亚洲欧美在线视频| 国产亚洲欧美在线视频| 玩弄中年熟妇正在播放| 一本大道熟女人妻中文字幕在线| 日本在线观看a| 国产又黄又猛视频| 亚洲第一中文av| 午夜啪啪小视频| 91成人在线视频观看| 国产资源在线免费观看| 国产毛片视频网站| 18禁男女爽爽爽午夜网站免费| 国产免费一区二区三区视频| 天天天干夜夜夜操| 在线一区二区不卡| 乱熟女高潮一区二区在线| av在线播放亚洲| 超碰影院在线观看| 中文字幕国产高清| www.日本三级| 久久网站免费视频| 亚洲国产精品三区| 黄色www在线观看| 成人免费视频91| 亚洲精品中文字幕无码蜜桃| 三上悠亚在线一区| 路边理发店露脸熟妇泻火| 妞干网在线视频观看| 亚洲狼人综合干| 黄色www在线观看| 日本福利视频在线| 天天操,天天操| 日韩a级黄色片| 国产a级片免费观看| xxx中文字幕| 免费在线观看亚洲视频| xxx国产在线观看| av在线免费观看国产| 黄色片久久久久| 国产一区一区三区| wwwxxx黄色片| 日韩最新中文字幕| 人妻内射一区二区在线视频| 精产国品一二三区| 18禁免费无码无遮挡不卡网站| 污视频网址在线观看| 成人毛片一区二区| 99热一区二区| 成人午夜精品久久久久久久蜜臀| 日韩一级免费片| 妞干网在线观看视频| 伊人网在线综合| 日本免费不卡一区二区| 亚洲综合在线一区二区| 国产免费黄色av| 无码人妻aⅴ一区二区三区日本| 人妻内射一区二区在线视频| 一二三四中文字幕| 亚洲天堂2018av| 丰满爆乳一区二区三区| 亚洲国产精品女人| 三级a三级三级三级a十八发禁止| 中国丰满熟妇xxxx性| 91小视频在线播放| 热久久精品国产| 国产高清av在线播放|